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Abstract

Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify
vulnerable ecosystems and species’ distributions in areas that have not been sampled. However, in the deep sea, several
limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species
presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to
control deep-sea species’ distributions. To address these problems, global habitat suitability models have been generated
for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to
generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded
data from sources such as World Ocean Atlas to produce continuous 30-arc second (,1 km2) global grids for
environmental, chemical and physical data of the world’s oceans. The increased area and resolution of the environmental
variables resulted in a greater number of coral presence records being incorporated into habitat models and higher
accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth,
temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely
to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very
little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts), which have not been sampled or
identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field
validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling
efforts to identify vulnerable marine ecosystems for inclusion in future marine protected areas and reduce coral bycatch by
commercial fisheries.
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Introduction

One of the most enigmatic groups of deep-sea organisms are

framework-forming cold-water corals. Compared to many other

deep-sea ecosystems, cold-water corals are relatively well

researched, but still face significant threats from human activities

[1,2,3]. Their susceptibility to anthropogenic impacts and slow

rates of recovery from disturbance has led to an increasing

awareness that cold-water coral ecosystems deserve full protection

both within countries’ Exclusive Economic Zones (EEZs) and on

the high seas. Predictive habitat modelling is increasingly being

used as a cost effective tool to identify where vulnerable marine

ecosystems (VMEs) could occur and to provide insight into the

environmental drivers that control their distribution [4,5,6,7]. The

enormous costs associated with the operation of remotely operated

vehicles (ROVs), submersibles, and ships with multibeam

capability reinforce the need for well developed predictive habitat

models to guide research, conservation and management initia-

tives. Refined models can be used to target areas with the highest

probability of discovering cold-water coral ecosystems and

contribute to the establishment of ecologically coherent networks

of Marine Protected Areas (MPAs).

In this manuscript, ‘reefs’ are defined as biogenic structures

formed by azooxanthellate scleractinian corals that alter sediment

deposition, provide complex structural habitat and are subject to

periodic growth and (bio)erosion [2,3]. Cold-water coral reefs can

be many meters in height, kilometres in length and provide

important habitat and nursery areas for many species, including

commercially important fish species [2]. Six species of Scleractinia

are known to form reef frameworks in the deep sea, Enallopsammia

rostrata, Goniocorella dumosa, Lophelia pertusa, Madrepora oculata, Oculina

varicosa and Solenosmilia variabilis [8]. There has been significant bias

towards L. pertusa particularly with respect to research and

management, driven in part by the extent, accessibility and it’s

prominence as a flagship species for deep-sea conservation [1].

This is especially evident in the North Atlantic, where L. pertusa is

the dominant framework-forming species. It is important to note

that while the other five species are not as well studied as L. pertusa,

they are the dominant framework-forming scleractinians in many

regions of the world’s oceans (i.e. the South Pacific). Madrepora
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oculata often occurs as a secondary framework-former growing in

tandem with species such as L. pertusa and G. dumosa [8]. Similarly,

E. rostrata is also found associated with L. pertusa, M. oculata and/or

S. variabilis and can form massive dendroid colonies up to 1 m

thick [8]. Oculina varicosa is unusual in that it is found both in

shallow waters (,50 m with algal symbionts) and in the deep sea

where it is azoozanthellate (depth range is ,50 to 100 m). In the

deep sea, O. varicosa forms tall, fragile reefs that can reach 35 m in

height [9]. Goniocorella dumosa is mostly found in the southern

hemisphere and is a dominant framework-former in New Zealand

waters [10]. Solenosmilia variabilis has a cosmopolitan distribution,

but has not been found in the Antarctic, north Pacific or east

Pacific [10].

There are several characteristics of these framework-forming

cold-water corals that make them vulnerable to a range of

anthropogenic impacts. Their slow growth rate, fragility, and

longevity (i.e. some L. pertusa reefs in the North Atlantic were dated

to 4550 years old [11]) make them particularly vulnerable to

human activities including: bottom-contact fishing activity [11,12],

hydrocarbon extraction and exploration [3] and the emerging

threat of seabed mining [13]. Perhaps more severe, is the threat

ocean acidification poses to cold-water coral reef ecosystems [14].

Such a pervasive range of impacts and the long recovery periods of

these organisms has led to global efforts to conserve these

ecosystems. One such mechanism was put forward in 2006 by

the United Nations General Assembly, calling upon member states

and regional fisheries management organisations to halt bottom-

contact fishing in high seas areas where seamounts, hydrothermal

vents, and cold-water corals are known or are likely to occur based

on the best available scientific information (UN GA, Draft

resolution of the 61st session of the General Assembly, 6th

December 2006, A/61/L.38). Participating states could not reach

consensus on the bottom trawling moratorium, but there is

growing international support for habitat suitability modelling in

the deep sea.

Several studies have been conducted that utilise a range of

different presence-only habitat suitability modelling techniques on

deep-sea species [4,5,6,7,15,16]. However, there have been no

major developments in addressing many of the current limitations

of predictive modelling in the deep sea. The lack of environmental

data at high resolutions is perhaps the greatest limitation to deep-

sea modelling efforts [4,6]. To address this, studies have focused

on improving local-scale habitat suitability modelling by integrat-

ing digital terrain variables derived from multibeam bathymetry

[5,16,17]. Whilst this approach produces valuable data on species

distributions in localised areas (1–100 km2), it requires intensive

and often expensive sampling techniques be conducted prior to

modelling the area (e.g. multibeam bathymetry and video surveys).

As such, local approaches are of limited impact in the broadscale

identification of unknown habitat for cruise planning, manage-

ment and conservation initiatives. Regional and global scale

models are needed to predict habitat suitability for corals in areas

that have not been surveyed and produced at spatial resolutions

sufficient to guide research vessels towards clearly defined areas for

sampling activity. The data from the resulting surveys can then be

used to develop high-resolution local-scale models for that area

and to verify coral presence or absence.

Coarse spatial resolutions at global and regional scales, such as

those described in Davies et al. [4] and Tittensor et al. [6] are not

sufficient for identifying future sampling targets and management

applications (i.e. potential MPA identification). In this study, the

previously published modelling approach described by Davies

et al. [4] has been revised to use the highest resolution, 30-arc

second, global bathymetric data available (effectively 1 km2 cell

resolution) to resample coarse resolution global environmental

datasets. The 30-arc second environmental database, presented

here, generates representations of seafloor conditions, which can

be highly variable over small spatial scales. The high resolution

environmental datasets were then used to predict potential habitat

suitability for five species of framework-forming scleractinians.

Methods

Coral presence data
The majority of species presence data for (number of presence

localities retained for analysis in brackets), Enallopsammia rostrata

(215), Goniocorella dumosa (230), Lophelia pertusa (863), Madrepora

oculata (591) and Solenosmillia variabilis (380), were collated from

several sources including online databases, the United Nations

Environment Programme and from sources such as peer-reviewed

journals, museum records, cruise reports and grey literature (See

Figure 1 and Table S1). Oculina varicosa was omitted from analysis

due to the paucity of records. In total, 2,279 presence localities

were retained for individual species analysis after removing

duplicate records and those records that fell outside of the analysis

area. All framework forming species were combined to create an

analysis of scleractinian framework-formers, 1,697 localities were

retained for the combined species analysis, as multiple species were

sometimes found within a single sampling location. Multiple coral

locations within the same 30-arc second cell weight the habitat

suitability values in favour of the environmental conditions that

exist in these cells. This bias was removed by retaining only one

coral presence for multi-species assemblages.

Environmental data
Thirty two environmental layers were produced for use in the

predictive models. These datasets were collated from sources that

included ship CTD data, satellites (e.g. MODIS), climatologies

such as World Ocean Atlas and modelled data (Table 1). The

majority of source data were available as gridded datasets

partitioned into bins at standardised depth levels (z-layers), and

ranged in depth from 0 to ,5500 m (z-binned datasets, e.g.

temperature), whilst others were available as only a single layer at

the surface (e.g. surface primary productivity) (Table 1). For z-

binned datasets, it was assumed that the conditions found at a

specific gridded depth were representative of conditions at that

area of seafloor. This allows for the creation of continuous

representations of seafloor conditions by extrapolating each z-bin

to the corresponding area of seafloor at that depth using an up-

scaling approach. Significant improvements over earlier methods,

such as the approach of Davies et al. [4], have been achieved by

integrating the highest resolution global bathymetric dataset

available (SRTM30 [18], a 30-arc second dataset, approximately

1 km2) to allow for the preservation of a higher spatial resolution.

Converting the z-binned datasets into representations of

seafloor conditions involved several processes. Firstly, for each

variable, all available z-bins were extracted independently and

interpolated to a slightly higher spatial resolution (usually 0.1u)
using inverse distance weighting. This interpolation procedure was

required to minimise gaps that appeared between adjacent z-bins

due to non-overlap when extrapolated on to the bathymetry.

Secondly, these layers were then resampled to match the extent

and cell resolution of the bathymetry with no further interpolation.

Thirdly, each resampled z-bin was then draped over the area of

seafloor that corresponded to its depth range. Each of these bins

did not overlap, and were finally merged to produce a continuous

representation of the variable at the seafloor. It was assumed that

conditions beyond the maximum depth of the data used in this
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study (.5500 m) were relatively stable towards the maximum

depth of the area. This was unlikely to influence suitability models

as framework-forming cold-water corals have not been document-

ed at these depths. This method was used to create annual-mean

values for regional current velocity, temperature, salinity, nitrate,

phosphate, silicate, dissolved oxygen concentrations and carbonate

chemistry parameters (Table 1).

Surface datasets were not up-scaled by the above process as they

were only available as a single z-bin. Instead, these variables were

initially interpolated to a higher spatial resolution (usually 0.1u)
using inverse distance weighting and then resampled to match the

extent and cell resolution of the other variables. Surface

productivity values were obtained from the Vertically Generalised

Productivity Model (VGPM, [27]) and MODIS chlorophyll a data

(years 2002–2007), and particulate organic carbon flux to the

seafloor was obtained from Lutz et al. [26]. Terrain variables were

calculated using ESRI’s ArcGIS 9.3 Spatial Analyst extension or

the Benthic Terrain Modeler (BTM) extension [28] using

SRTM30 bathymetry. Bathymetric position index and rugosity

were calculated using BTM. Slope and aspect were calculated

within ArcGIS and converted to continuous radians. Additional

slope data were obtained from analyses by Becker & Sandwell [19]

for comparison with slope computed in this study. Temporal

variability within variables was omitted, as the longevity of many

cold-water coral species far exceeds the measuring period of most

oceanographic variables. For example, in regions not impacted by

recent glacial activity, there is evidence for continuous cold-water

coral growth over the last 50,000 years [29].

The accuracy of the up-scaled environmental variables was

tested using quality controlled water bottle data obtained from the

Global Ocean Data Analysis Project (GLODAP version 1.1; [30]).

GLODAP data was available for temperature, salinity, nitrate,

phosphate and silicate. GLODAP values deeper than 50 m were

retained for analysis and validation was conducted by intersecting

the location of GLODAP stations with the corresponding 30-arc

second environmental layers. Relationships were statistically

analysed using Pearson’s correlation. To show the spatial

distribution of error throughout the world’s oceans, the average

difference between GLODAP stations and the up-scaled environ-

mental layers were plotted onto a five degree grid (Figure 2).

Predicting distribution
The Maxent modelling (maximum entropy modelling [31])

approach was chosen to: (1) collectively model all scleractinian

Figure 1. Global distribution of species presences used in this study. a) All five framework forming species, b) Enallopsammia rostrata, c)
Goniocorella dumosa, d) Lophelia pertusa, e) Madrepora oculata, f) Solenosmillia variabilis.
doi:10.1371/journal.pone.0018483.g001
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framework forming coral species (5 species, omitting O. varicosa due

to a paucity of records) for management applications (i.e.

identifying potential VMEs) and (2) model five species of reef

forming scleractinians (E. rostrata, G. dumosa, L. pertusa, M. oculata

and S. variabilis) individually. Maxent is a presence-only approach

that generally out performs other presence-only techniques

including Ecological Niche Factor Analysis (ENFA) [6,32]. The

underlying assumption of Maxent is that the best approach to

determining an unknown probability distribution (in this case, the

distribution of a cold-water coral species) is to maximise entropy

based on constraints derived from environmental variables [31].

The algorithm is supplied within a Java software package (Maxent

version 3.2.1). The default model parameters were used as they

have performed well in other studies (a convergent threshold of

1025, maximum iteration value of 500 and a regularisation

multiplier of 1, [33]).

Covariation between environmental datasets is a complica-

tion that must be addressed in many predictive modelling

efforts. Environmental datasets used in this analysis were

assessed for covariation in a correlation matrix (Figures S1

and S2). Although Maxent is reasonably robust with respect to

covariation, an a priori variable selection process was used to

reduce covariation. Variables were selected based on a literature

search of environmental factors known or thought to influence

cold-water coral growth and survival. Strong correlations

between variables (.0.7) were addressed by omitting one of

the environmental variables (except for aragonite saturation

state and temperature; see results and discussion). The

importance of each variable in the model was assessed using a

jack-knifing procedure that compared the contribution of each

variable (when absent from the model) with a second model that

included the variable. The final habitat suitability maps were

produced by applying the calculated models to all cells in the

study region, using a logistic link function to yield a habitat

suitability index (HSI) between zero and one [33].

Several studies have highlighted issues with using only one

statistic to evaluate model performance (see [34]). In this study,

the model accuracy between the test data and the predicted

suitability models was assessed using a threshold-independent

procedure that used a receiver operating characteristic (ROC)

curve with area under curve (AUC) for the test localities and a

threshold-dependent procedure that assessed misclassification

rate. To calculate validation metrics, the presence data was

randomly partitioned to create 70% training and 30% test

datasets, with test data used to calculate validation metrics.

With presence-only data, Phillips et al. [31] define the AUC

statistic as the probability that a presence site is ranked above a

random background site. In this situation, AUC scores of 0.5

Table 1. Environmental layers developed for this study.

Variable Native resolution Source

Terrain variables

Depth 0.0083u Becker et al. [18]

Slope 0.25u60.2u Becker & Sandwell [19]

Rugosity1,3, slope 22,3 0.0083u Derived from Becker et al. [18]

Hydrographic variables

Regional current flow, vertical flow 0.5u Carton et al. [20]4,c

Chemical variables

Alkalinity 3.6u60.8–1.8u Steinacher et al. [21]5,b

Apparent oxygen utilisation, dissolved oxygen,
percent oxygen saturation.

1u Garcia et al. [22]a

Aragonite and calcite saturation states 1u, 3.6u60.8–1.8u Orr et al. [23]6,a, Steinacher et al. [21]5,b

Carbonate ion concentration 3.6u60.8–1.8u Steinacher et al. [21]5,b

Dissolved inorganic carbon 3.6u60.8–1.8u Steinacher et al. [21]5,b

Nitrate, phosphate, silicate 1u Garcia et al. [24]a

pH 1u, 3.6u60.8–1.8u Orr et al. [23]6,a, Steinacher et al. [21]5.b

Salinity, temperature 0.25u Boyer et al. [25]a

Biological variables

Particulate organic carbon 0.08u Lutz et al. [26]

Primary productivity 0.04u MODIS L3 Annual SMI7

Primary productivity export 0.05u Behrenfield & Falkowski [27]8

aAvailable in 33 z-bins ranging from 0–5500 m.
bavailable in 25 z-bins ranging from 6–4775 m.
cavailable in 40 z-bins ranging from 5–5374 m.
1Derived using Bathymetric Terrain Modeler.
2Derived using ArcGIS spatial analyst.
34 layers created using moving windows of 5 km, 20 km, 30 km and 100 km.
4SODA model 2.0.4; mean 1990–2007.
5Extracted from SRES B1 scenario model; mean 2000–2009.
6Extracted from OCMIP2 model data for 1995.
7Downloaded from http://oceancolor.gsfc.nasa.gov, MODIS L3 product; mean 2002–2008.
8Standard VGPM using MODIS data; mean 2002–2007.
doi:10.1371/journal.pone.0018483.t001
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indicate that the discrimination of the model is no better than

random and the maximum achievable AUC value is 1. Several

studies have criticised the use of AUC as a single metric for

assessing performance because AUC is sensitive to the total

spatial extent of the model [35,36]. In this study, the presence

localities of some coral species were restricted to isolated

regions (i.e. most G. dumosa records are located in the waters

surrounding New Zealand), in these cases, AUC scores may be

inaccurate. Two further metrics were applied, 1) a threshold-

dependent omission rate (fixed value of 10) [37], which

evaluates model success by assessing the proportion of test

locations that fall into cells that were not predicted as suitable,

and 2) Test gain, which can be interpreted as the average log

probability of the presence samples used to test the model. For

example, if the test gain is 2, the average likelihood of a test

presence locality is exp(2) (about 7.4) times greater than that of

a random background pixel [38].

There is ongoing debate regarding the interpretation of

Maxent’s logistic prediction values (0–1) for habitat suitability

[35,39]. Rather than assign an arbitrary cut-off, several studies

have defined a binary threshold, which states that a species is

likely to be found in an area with a habitat suitability value

above a given threshold, but not likely to be found below it

[37,40,41]. Maxent’s 10th percentile (presence value) was used

to provide a cut-off point for suitability in this study. The

assumption being that 10% of the presence data may occur in

areas where the species is absent due to positioning errors or a

lack of resolution in environmental data, and as such, omits

the suitability values below the highest of the 10% of records.

This is especially pertinent for the coral species locations

presented here, as presence records were collected over long

time periods with varying degrees of accuracy in spatial

precision [37,41].

Results

Environmental layers
The five up-scaled environmental variables that were assessed

with GLODAP water bottle data were highly correlated at

each sampling location (Pearson’s correlation, R2, tempera-

ture = 0.924 (n = 6972), salinity = 0.914 (n = 6891), nitrate = 0.913

(n = 6598), phosphate = 0.923 (n = 6386), silicate = 0.823 (n = 6994),

all values significant at p,0.001) (Figures 3 and Figure S3, Figure

S4, Figure S5, Figure S6). Temperature correlated the strongest

with GLODAP data (Figure 3a) and generally reflected the patterns

observed in the GLODAP data (Figure 3b). Similar patterns

between the validation data and the environmental layer were

observed along latitudinal gradients with a slight mismatch south of

Figure 2. Geographical distribution of error between the up-scaled environmental layers and water bottle stations. a) Temperature,
b) salinity, c) nitrate, d) phosphate, e) silicate. The scales show the average difference of all water bottle stations that fall within a single five degree
grid cell.
doi:10.1371/journal.pone.0018483.g002
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the equator and between 50u and 60uN (Figure 3c). Longitudinally,

the layer underperformed between 80u and 180uW, but perfor-

mance increased eastward (Figure 3d). Shown spatially, the

discrepancies between the variables and water bottle data are

generally found in areas of high variability, i.e. in the Pacific Ocean

and/or areas where upwelling occurs (Figure 2). The other four

variables showed similar patterns as temperature, with consistent fit

across depth, longitudinal and latitudinal gradients (Figure S3,

Figure S4, Figure S5, Figure S6). Variables that were up-scaled

using source data with higher native spatial resolutions (i.e.

temperature and salinity, 0.25u) performed better than variables

with native resolutions of 1u (i.e. silicate, phosphate and nitrate)

(Figure 2), but the response was not consistent amongst these

variables with silicate showing more spatial variability than nitrate

and phosphate (Figure 2c–d).

Species niches
From the suite of environmental variables available, the a priori

variable selection identified eight variables that were likely to

influence the probability of species presence (Table 2). Two

Figure 3. Validation of the environmental layer creation process for temperature. a) Correlation (0.924) of intersected GLODAP stations
with the layer, b) mean temperature relationships at depth in 50 m bins, c) mean temperature at latitude in 5u bins, d) mean temperature at
longitude in 10u bins. The black lines are temperature at each GLODAP bottle station; the red lines are the value of the environmental layer at the
position of each GLODAP station.
doi:10.1371/journal.pone.0018483.g003
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variables that were highly correlated, but were retained on the

strength of their contribution were aragonite saturation state

(VARAG) and temperature, which were positively correlated for

both species and randomly distributed points (0.89 and 0.83

respectively, Figures S1 and S2). The jack-knife analysis of variable

contribution showed that amongst the scleractinian species the

highest contributions were from temperature, VARAG, depth and

salinity. This must be interpreted with caution due to covariation

as these layers can contain similar information, which may

artificially inflate variable contribution scores. However, the test

AUC scores for models generated with a single variable reinforced

that these variables were the top predictor variables regardless of

covariation.

By intersecting the known distribution of coral species with

the environmental layers, it was possible to gain insight into the

species niches and the factors that are most important in

controlling their distribution (Figure 4 and Table S2). For

VARAG, most coral records were found in waters supersaturated

with respect to aragonite (VARAG.1; 88.5% of all records).

Most species were restricted to depths shallower than 1500 m,

but there were some records (11%) that were found much

deeper and are likely to be errors in the reporting of the species’

position, especially on seamounts or steep slopes. The majority

of coral records were found in areas where dissolved oxygen

concentrations were .4 ml l21. Enallopsammia rostrata and S.

variabilis were mostly found in areas with limited particulate

organic carbon input. However, G. dumosa, L. pertusa and M.

oculata occur across a greater range of productivity, between 5

and 120 g Corg m22 yr21. All species in this study had a

relatively limited salinity range between 34 and 37 (Figure 4

and Table S2). Goniocorella dumosa, L. pertusa and S. variabilis were

found in areas with restricted temperatures of ,8uC, 10uC and

5uC respectively, whilst E. rostrata and M. oculata were found

over wider temperature ranges (Figure 4 and Table S2). In

general, scleractinian framework-forming corals were mostly

found in areas (but are not limited to) that are: 1)

supersaturated with respect to aragonite, 2) ,1500 m in depth,

3) with dissolved oxygen concentrations .4 ml l21, 4) over a

relatively limited salinity range, 5) with low nutrient concen-

trations and 6) temperatures between 5–10uC (Figure 4 and

Table S2).

Model evaluation
The coral habitat models generated performed well across the

metrics used to validate the modelled outputs. All AUC scores

were .0.97 (Table 2) and were significantly different from that of

a random prediction of AUC = 0.5 (Wilcoxon rank-sum test,

p,0.01). The AUC score for the scleractinian habitat model that

included all species performed better than some individual species

models, which suggests the niches of individual scleractinian

Table 2. Validation statistics and jack-knife analysis of variable contributions to the models.

Variable All 5 species E. rostrata G. dumosa L. pertusa M. oculata S. variabilis

Validation statistics

Test AUC 0.986 (0.002) 0.971 (0.015) 0.996 (0.001) 0.993 (0.002) 0.990 (0.002) 0.985 (0.004)

Test gain 3.082 3.393 4.873 4.150 3.621 3.351

10th percentile training presence 0.590 0.392 0.678 0.678 0.538 0.464

Omission rate (Threshold 10) 2% 7.8% 4.4% 0.8% 1.7% 3.5%

Jack-knife of variable importance

Depth 1.506 2.098{ 2.880{ 1.986 2.015*{ 1.980{

Dissolved oxygen 0.101 0.173 0.751* 0.343 0.100 0.257

Aragonite saturation state (VARAG) 1.445 1.761 2.805 2.094 1.876 1.809

Particulate organic carbon 1.177 1.141* 2.507 1.720 1.422 1.571

Phosphate 0.832 0.583 1.702 1.683 1.127 0.554

Salinity 1.272 1.673 1.747 2.208*{ 1.681 1.680

Slope (100 km) 0.317 0.718 0.167 0.381 0.615 0.622

Temperature 1.508*{ 2.007 2.845 2.168 1.965 1.710*

Test AUC for a single variable

Depth 0.966 0.954 0.984 0.966 0.972 0.953

Dissolved oxygen 0.665 0.744 0.838 0.705 0.715 0.784

Aragonite saturation state (VARAG) 0.964 0.917 0.983 0.981 0.968 0.958

Particulate organic carbon 0.941 0.914 0.972 0.963 0.942 0.937

Phosphate 0.889 0.797 0.914 0.964 0.891 0.809

Salinity 0.963 0.927 0.950 0.984 0.941 0.963

Slope (100 km) 0.758 0.825 0.656 0.763 0.812 0.764

Temperature 0.970 0.946 0.984 0.984 0.974 0.952

Higher values for the regularised training gain of the jack-knife test indicates greater contribution to the model for a variable (these values are not directly comparable
between the different species). Test AUC numbers in parentheses are the standard deviation of the Test AUC scores.
*indicates the variable that reduced the gain the most when omitted and therefore contained the most information that was not present in other variables.
{indicates the variable with the highest gain when used in isolation and had the most useful information by itself. The top 3 variables are highlighted in bold for each
species, both for jack-knife of variable contribution and test AUC values for Maxent models generated using a single variable.
doi:10.1371/journal.pone.0018483.t002
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Figure 4. Bean plots of species presences intersected with the environmental variables used in the models (the small lines in the
centre of each bean shows individual presence data points. The bean itself is a density trace that is mirrored to show as a full bean [42]).
doi:10.1371/journal.pone.0018483.g004
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species had some overlap for the most important variables (see

species niches subsection above and Table 2). The high AUC scores

were supported by high test gain and low omission rates across the

species, indicating only few presences were misclassified as absent

and that predicted presences were several orders of magnitude more

probable than that of a random background pixel (Table 2).

Habitat suitability
The benefit of higher resolution environmental layers is

immediately obvious in the habitat suitability maps generated by

Maxent (Figure 5). Maxent identified suitable habitat for

framework-forming cold-water corals throughout the world’s

oceans (Figure 5a), but individual species habitat suitability varied

greatly by geographic region (Figures 5b–5f, 6 and Figure S7,

Figure S8, Figure S9, Figure S10, Figure S11, Figure S12). The

majority of suitable habitat was predicted in the North Atlantic

and the South Pacific (waters surrounding New Zealand). Other

significant regions for scleractinian habitat included the continen-

tal shelves off Western Africa, Eastern South America and

Western/Southern Australia. Predicted coral habitat in the Indian

Ocean, Central Pacific, and Southern Atlantic was largely limited

to large seamounts (.1 km in diameter) and deep slopes of

oceanic islands. On a global scale, both continental margins and

seamounts are known to be important areas for deep-sea

scleractinian reef-formers (Figures 5, 7 and S7). However, there

are likely many smaller seamounts (,1 km in diameter) that were

not detected in the models.

The model outputs showed distinct geographic separation in

the distribution of suitable habitat for each species (Figures 5b–

5f, 6 and Figure S7, Figure S8, Figure S9, Figure S10, Figure

S11, Figure S12). Enallopsammia rostrata was largely predicted to

be found in the South Pacific (Figures 1b, 5b, 6a and S8). The

majority of suitable habitat for G. dumosa was predicted in the

waters of New Zealand and Australia. Suitable habitat for G.

dumosa was also found on the continental shelves of Northern

Europe, but this should be interpreted with caution due to the

limited sampling distribution for this species. In contrast to E.

rostrata, G. dumosa was less prevalent on large seamounts

(Figures 5c, 6b and S9). Suitable habitat for L. pertusa was

largely restricted to the North East Atlantic and the South

Eastern USA (Figures 5d and Figure S10). The majority of L.

pertusa habitat was predicted on continental shelves and slopes,

with less suitable habitat predicted on seamounts. Lophelia

pertusa habitat was also predicted in the waters of New Zealand,

an area where living colonies have not been documented. The

distribution of suitable habitat for M. oculata was similar to L.

pertusa, but was more prevalent on large seamounts (Figures 5e

and Figure S11). Finally, suitable habitat for S. variabilis appears

throughout the world’s oceans, but was largely restricted to

large seamounts and in the waters surrounding New Zealand.

Suitable S. variabilis habitat was also predicted on the

continental slopes of the Atlantic Ocean and throughout the

Mid-Atlantic Ridge (Figure 5f, 6c and S12). High resolution

images of habitat suitability by species are available as

Figure 5. Habitat suitability maps for framework forming species. a) All five framework forming species, b) E. rostrata, c) G. dumosa, d) L.
pertusa, e) M. oculata, f) S. variabilis. High resolution maps are available as supplementary Figures S7, S8, S9, S10, S11, S12.
doi:10.1371/journal.pone.0018483.g005
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supplementary figures (Figure S7, Figure S8, Figure S9, Figure

S10, Figure S11, Figure S12).

Discussion

This study improves significantly on previous global and regional

modelling efforts such as those by Davies et al. [4] and Tittensor et

al. [6]. The up-scaling approach used to characterise seafloor

conditions at 30-arc second spatial resolution resulted in a global

database of environmental, chemical and physical variables, which

could be used to predict the distributions of non-coral deep-sea taxa.

The increase in spatial resolution resulted in significantly more

presence records being included in the models than in previous

studies [4]. However, despite the advantages of this approach there

are still several limitations and constraints that must be recognised in

modelling deep-sea organisms at global scales (see below).

Figure 6. Local and regional area outputs for areas suitable habitat. a) E. rostrata around New Zealand and Australia, b) G. dumosa around
New Zealand and Australia, c) S. variabilis on seamounts in the Southern Ocean south of Madagascar.
doi:10.1371/journal.pone.0018483.g006
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The positives and negatives of up-scaling
Issues of spatial accuracy and scale have frustrated ecologists

and modellers for decades. In particular, the selection of

appropriate spatial and temporal resolutions for environmental

datasets is an important factor when constructing habitat

suitability models [43]. In previous studies, determination of

relevant spatial resolutions was difficult and/or unattainable for

cold-water corals (i.e. 1u in Davies et al. [4] and Tittensor et al.

[6]). Coarse resolution models miss important bathymetric features

such as seamounts and canyons, which are known to harbour well

developed cold-water scleractinian ecosystems. Depth can vary

considerably over small spatial scales and these undersea features

must be captured in modelling efforts. This is particularly

noticeable in areas that have strong environmental gradients over

short distances such as where two water masses meet and create a

clearly defined front over a distance of only several hundred

metres (i.e. temperature in the Faeroe Shetland channel [4,44]).

Whilst there are numerous benefits to the high resolution of the

up-scaling approach, there are still several issues that must be

considered. Firstly, the success of the environmental up-scaling

approach is heavily dependent on the quality and native resolution

of the input data. Up-scaled variables with higher native

resolutions had greater agreement with water bottle data than

those at coarser resolutions (0.25u for temperature and salinity

against 1u for nitrate, phosphate and silicate) (Figure 3). Secondly,

global climatologies such as World Ocean Atlas produce annual

averages that bin all available data from multiple time series into a

single data product to retain a higher number of samples and

hence greater spatial coverage. Monthly or seasonal time series are

often made available, but suffer from reduced sample numbers

that increases the uncertainty in the data. Thirdly, the reinterpola-

tion of the source data which comprises a component of the

variable up-scaling process also introduces error. This produces a

smoother response in some areas (Figures 2, S1, S2, S3, S4) and is

most noticeable between 100u and 180uW, but the general pattern

between the up-scaled variables and the GLODAP test data was

similar. Fourthly, the up-scaling procedure generalises conditions

for a given area of seafloor and did not incorporate small scale

oceanographic variability such as upwelling or downwelling on

seamounts or banks, which is probably not captured in source data

with low native resolutions (Figure 3).

There are some areas where the up-scaled environmental layers

are less reliable for a combination of the reasons listed. For

example, there are lower numbers of observations in source

datasets between 100u and 180uW compared with well studied

regions such as the North Atlantic [24], which leads to some

discrepancies between the up-scaled layers and water bottle data

(Figure 3). Some regions also contain large scale oceanographic

features that vary temporally, for example, the up-scaled

temperature layer showed large inconsistencies in the area of the

El Niño/La Niña-Southern Oscillation (central Pacific), which was

captured in bottle data. In general, most variables with the

exception of silicate performed well in the Atlantic, Indian and

Southern Oceans (Figure 3). These points highlight the problem

with uneven sampling effort throughout the world’s oceans, the

coarse native resolutions and the coarse temporal resolutions at

which data are available. On the whole, these minor errors do not

distract from the capability of the up-scaling approach to produce

fairly accurate representations of conditions on the seafloor

(Figure 8), but care must be taken when interpreting the modelled

habitat suitability in areas where the environmental data may be

less reliable (Figure 3).

Unincorporated and limited geographic extent of model
variables

There are several variables that are important for scleractinian

coral settlement, growth and survival that were not included in the

model because they do not exist at sufficient resolutions and/or at

Figure 7. Binary predicted presence map for scleractinian framework-forming corals based on the 10th percentile training
presence, which omits the 10% most extreme presence observations as they may represent recording errors. White background
indicates that these species are not likely to be found, red indicates probable presence.
doi:10.1371/journal.pone.0018483.g007
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global scales. These variables include benthic hard substrata, high

resolution current direction/velocity and mobile or benthic

sediments. Framework-forming scleractinians require hard substra-

ta for colonisation (e.g. L. pertusa [45]) and like depth, substrate tends

to be highly variable over small spatial scales. Vast areas of hard

substrate may not be required in all areas, as small cobbles and shells

may represent attachment substrata in the early stages of reef

development [45] but this often depends on environmental

requirements being met in the region and that sufficient larval

supply is present. Similarly, current velocity and direction also vary

considerably over small spatial scales [46]. For example, on the

Jasper Seamount in the Pacific, octocorals are more abundant near

peaks and on small-scale topography such as knobs and pinnacles

compared with mid-slope sites at similar depths [47]. It is likely that

this is also true of scleractinian corals on seamounts, as previous

observations amongst reefs have shown them to be largely found on

undersea features where encounters with food particles are

maximised [46,48]. Cold-water scleractinian corals also appear to

be adversely affected by heavy sedimentation and consequently

areas with high sediment loads and soft bottoms may not be suitable

for coral colonisation or survival [49]. For local and regional scale

modelling, it is important that substrate, current velocity/direction

and sediment data be included when available. Recent work on

developing proxies for substrate shows great promise in areas where

multibeam bathymetry or side-scan sonar has been collected [50].

Model results presented here likely overpredict the amount of

suitable habitat in some areas because fine-scale bathymetric

features (10’s of metres), substrate and current data are not

available. These overpredictions were especially evident in the

North East Atlantic and the South East USA (Figure 5). Both areas

are known to support well developed cold-water coral ecosystems

[51], but the model results indicate suitable coral habitat in areas

that are known soft bottom regions where corals are likely or

known to be absent. Over-prediction could also be a problem in

other coastal regions that have high sediment loadings (i.e. the east

coast of South America) and/or the presence of soft substrata.

In addition to several unincorporated datasets, the geographic

extent of some important variables (i.e. VARAG) was limited and

reduced the extent of the model analysis. In this study, present day

carbonate chemistry data from Orr et al. [23] was selected over

Steinacher et al. [21] because it was based on modern-day

observations from survey data [52], used a multi-model approach,

was available at a higher spatial resolution (1u versus 3.6u60.8–

1.8u) and was modelled on more z-bins (33 versus 25). The

disadvantage of using Orr et al. [23] over Steinacher et al. [21] is

that the analysis extent was limited to a maximum of 60uN and

omitted the Gulf of Mexico, South China Sea and the

Mediterranean Sea. The restriction at 60uN omitted some of the

best developed and documented L. pertusa reefs in the north

Atlantic [53]. The two VARAG datasets were a reasonable fit at the

Figure 8. Comparison between earlier predictions of suitable habitat for L. pertusa by Davies et al. [4] and those developed in this
study. a) global L. pertusa habitat predicted by Davies et al. [4] using ENFA, b) global L. pertusa habitat predicted by this study. Note the significant
increase in spatial resolution and ability to identify suitable habitat on seamounts off Portugal.
doi:10.1371/journal.pone.0018483.g008
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locations where scleractinian records were found (Pearson’s

correlation, R2 = 0.85, n = 2,279, p,0.001), but there were large

differences in the proportion of species records that were found in

waters undersaturated with aragonite (11.5% were found in

undersaturated waters in Orr et al. [23] and 5.4% in Steinacher

et al. [21]). These differences were more pronounced amongst the

deeper species in this study, i.e. for E. rostrata and S. variabilis,

25.1% and 30.3% of records respectively were found to be

undersaturated in Orr et al. [23] compared with 11.2% and

11.1% in Steinacher et al. [21]. These differences arise mostly

from the greater vertical and cell resolution of Orr et al. [23],

which produces better fitted environmental variables using the up-

scaling approach presented in this manuscript. The Steinacher

et al. [21] data extends into the Arctic (.60uN) but is derived from

limited modern-day observations, which are needed to accurately

model carbonate chemistry in the region. The extent, quality, and

availability of environmental, chemical and physical data are

continually improving and should be incorporated in an iterative

process with field surveys to refine predictions and reduce the

number of false positives and negatives in habitat suitability

models.

Presence records and variable importance
The limited number of coral presence records used to model

habitat distribution for some species highlights the need for more

targeted sampling to document coral locations globally. For

example, few O. varicosa presence localities were obtained and

preliminary models suffered from significant overprediction and

artificially high AUC scores, forcing the omission of this species

from the analysis. Several recent studies have investigated the

effectiveness and reliability of habitat suitability models construct-

ed with low numbers of presences, a common problem for difficult

to detect species (i.e. cold-water corals) and those that have had

limited systematic survey effort such as records from museum

collections [54]. This does not preclude the possibility of modelling

species distributions with low sample numbers, as Maxent is

capable of producing good models with as few as five presences

[37]. However, Maxent does appear to overpredict suitable

habitat when using small presence datasets compared with other

methods [37,55]. In this study, the amount of presence records for

E. rostrata and G. dumosa were comparatively lower than the other

species, but this study has used more presence records than

previous global deep-sea habitat suitability models [4,6].

Depth, temperature, salinity and aragonite saturation state

accounted for the highest contributions to coral habitat predictions

and agree with findings from previous studies into cold-water coral

distributions [4,6,56]. Particulate organic carbon (POC) was

expected to be an important variable as cold-water corals are

sessile filter feeders dependent on organic matter falling from the

surface or advected via currents that bring organic matter and

zooplankton to the coral [57]. The majority of coral records

retained in this analysis were located in areas with relatively low

POC flux, which suggests several hypotheses. 1) That cold-water

scleractinians may not be as dependent on high surface

productivity as suggested by Guinotte et al. [14], as food may be

transported into coral areas from adjacent waters with higher

productivity. 2) The cold-water species included in this analysis

have relatively low nutritional requirements or 3) the input data

does not accurately capture the POC reaching the seafloor.

Further research into the nutritional requirements of cold-water

scleractinians is required to satisfy these hypotheses. Additionally,

the proportion of records of E. rostrata and S. variabilis found in

areas undersaturated with aragonite were much greater, 25.1%

and 30.3% respectively, compared to the other three species

included in the analysis (G. dumosa 4.4%, L. pertusa 2.7% and M.

oculata 10.3%). This suggests that E. rostrata and S. variabilis are

potentially less susceptible to the shoaling of the aragonite

saturation horizon than other framework-forming scleractinians

as they are found in deeper waters that are already closer to the

aragonite saturation horizon. This fact highlights the paucity of

information available on how cold-water corals may respond to

changes in basic environmental conditions and supports the need

for further, multi-species, experimental investigation into their

tolerances.

Field validation and utility of habitat predictions for
management

Field validation of modelled habitat is needed to 1) assess the

accuracy of model predictions, 2) refine models by identifying false

positives, and 3) gauge the utility of these methods for identifying

cold-water coral habitat in unsurveyed areas for management

action (i.e. the high seas). The model results presented here are not

meant to identify coral occurrences with pin point accuracy and

are unlikely to achieve this based on currently available data. They

are more useful in directing research effort to areas that have the

highest probability of supporting framework-forming cold-water

corals. One additional complication for field validation efforts

using these high resolution predictions are the current technolog-

ical limitations of survey vehicles and equipment (i.e. ROVs,

submersibles, drop cameras, etc). The distribution of cold-water

coral ecosystems within a single cell of these models (30-arc

seconds) could be patchy [45] and could easily be missed on

vehicle transects with limited range and narrow fields of view. To

address this limitation, and to improve the probability of locating

undiscovered coral areas, research ships should first use multibeam

surveys (in high probability areas) to identify substrate character-

istics that can support framework-forming cold-water coral growth

or identify corals (e.g. emergent hard substrata, coral rubble).

These substrates have distinct acoustic backscatter signatures in

multibeam bathymetry and can be used to target the deployment

of video cameras or ROVs which may reveal cold-water coral

ecosystems [50,58].

Conclusions
The high costs associated with sampling and surveying in the

deep sea virtually assures that detailed surveys of all of the world’s

oceans will not be economically feasible. This limitation highlights

the need for well developed and accurate modelling efforts to

identify favourable cold-water coral habitat and other vulnerable

marine ecosystems such as hexactinellid sponge reefs. The up-

scaling approach presented here resulted in a high resolution

database of global seafloor conditions that could be used to model

habitats for numerous deep-sea species. The habitat predictions

and database are a significant enhancement over earlier research

[4,6], and illustrates the potential for improving our knowledge of

potential cold-water coral distributions and the factors that control

their distribution using existing data. Field validation of these

models will increase model accuracy and future model iterations

will integrate new and/or higher resolution environmental data as

it becomes available. Validated models are needed to identify and

document areas that should be considered for MPA designation.

Regional and local scale modelling efforts in areas where higher

resolution bathymetry exists (i.e. the U.S. and Australian

continental shelves) will reduce overprediction, resulting in more

accurate predictions of cold-water coral distribution. Regional

scale models for predicting cold-water coral habitat at higher

resolutions (,90 m) are currently in development for the southeast

and west coasts of the USA and represent the next step in
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developing predictive modelling as a valuable technique for the

management of deep-sea species.

Supporting Information

Figure S1 Correlation matrix of the environmental layers

developed for this study based on 10,000 randomly distributed

points throughout maximum extents (all values significant at

p,0.05, Pearson’s correlation coefficient). Colour represents

correlation strength; no colour = 0–0.2, green = 0.2–0.4, yel-

low = 0.4–0.6, orange = 0.6–0.8 and red = 0.8–1. The negative

sign in a cell represents a negative correlation between the

variables, no sign denotes positive.

(TIF)

Figure S2 Correlation matrix of the environmental layers

developed for this study based upon the species location data (all

values significant at p,0.05, Pearson’s correlation coefficient).

Colour represents correlation strength; no colour = 0–0.2,

green = 0.2–0.4, yellow = 0.4–0.6, orange = 0.6–0.8 and

red = 0.8–1. The negative sign in a cell represents a negative

correlation between the variables, no sign denotes positive.

(TIF)

Figure S3 Validation of the environmental layer creation

process for nitrate. a) Correlation (0.913) of intersected GLODAP

stations with the layer, b) mean nitrate relationships at depth in

50 m bins, c) mean nitrate at latitude in 5u bins and d) mean

nitrate at longitude in 10u bins. The black lines are nitrate at each

GLODAP bottle station; the red lines are the value of the

environmental layer at the position of each GLODAP station.

(TIF)

Figure S4 Validation of the environmental layer creation

process for phosphate. a) Correlation (0.923) of intersected

GLODAP stations with the layer, b) mean phosphate relationships

at depth in 50 m bins, c) mean phosphate at latitude in 5u bins and

d) mean phosphate at longitude in 10u bins. The black lines are

phosphate at each GLODAP bottle station; the red lines are the

value of the environmental layer at the position of each GLODAP

station.

(TIF)

Figure S5 Validation of the environmental layer creation

process for salinity. a) Correlation (0.914) of intersected GLODAP

stations with the layer, b) mean salinity relationships at depth in

50 m bins, c) mean salinity at latitude in 5u bins and d) mean

salinity at longitude in 10u bins. The black lines are salinity at each

GLODAP bottle station; the red lines are the value of the

environmental layer at the position of each GLODAP station.

(TIF)

Figure S6 Validation of the environmental layer creation

process for silicate. a) Correlation (0.823) of intersected GLODAP

stations with the layer, b) mean silicate relationships at depth in

50 m bins, c) mean silicate at latitude in 5u bins and d) mean

silicate at longitude in 10u bins. The black lines are silicate at each

GLODAP bottle station; the red lines are the value of the

environmental layer at the position of each GLODAP station.

(TIF)

Figure S7 High resolution habitat suitability map for all species.

(TIF)

Figure S8 High resolution habitat suitability map for Enallop-

sammia rostrata.

(TIF)

Figure S9 High resolution habitat suitability map for Goniocorella

dumosa.

(TIF)

Figure S10 High resolution habitat suitability map for Lophelia

pertusa.

(TIF)

Figure S11 High resolution habitat suitability map for Madrepora

oculata.

(TIF)

Figure S12 High resolution habitat suitability map for Solenos-

milia variabilis.

(TIF)

Table S1 Sources of species locality records that were utilised to

develop the presence only dataset for this study. Several datasets

contained identical records, which were removed, significantly

lowering the number of presences available. Further records

removed were, those that fell outside the analysis extent and

duplicate records that fell inside a single grid cell.

(DOCX)

Table S2 Mean values of the cells of each environmental

variable used in the models where species presences were found

(standard deviation in parentheses).

(DOCX)
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8. Freiwald A, Fosså JH, Grehan A, Koslow T, Roberts JM (2004) Cold-water

coral reefs. Cambridge, UK: UNEP-WCMC. 84 p.

Habitat Suitability for Cold-Water Corals

PLoS ONE | www.plosone.org 14 April 2011 | Volume 6 | Issue 4 | e18483



9. Reed JK (2002) Deep-water Oculina coral reefs of Florida: biology, impacts, and

management. Hydrobiologia 471: 43–55.
10. Cairns SD (1995) The marine fauna of New Zealand: Scleractinia (Cnidaria:

Anthozoa). New Zealand Oceanographic Institute Memoirs 103: 210.
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